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ABSTRACT:

Agriculture continues to face challenges such as labor shortages, inefficient resource
utilization, and crop losses due to delayed disease detection. This paper proposes AgriRobo,
an intelligent farming system that integrates loT sensors, image processing, and Al-based
disease detection with automated control mechanisms. The system continuously monitors soil
and environmental parameters, captures high-resolution crop images, and applies machine
learning models to detect plant diseases and their severity. Based on analysis, AgriRobo
enables smart irrigation, targeted chemical spraying, and resource optimization, thereby
reducing manual effort, chemical waste, and operational costs. The proposed solution
promotes sustainable farming practices and enhances crop productivity, making it particularly

beneficial for small and medium-scale farmers.

KEYWORDS: Smart Agriculture, Internet of Things (IoT), Precision Spraying, Disease
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Sustainable Farming.

INTRODUCTION

Agriculture continues to be the backbone of global food security, yet farmers face persistent
challenges such as crop diseases, excessive chemical usage, rising labor costs, and
unpredictable climatic conditions. Traditional farming practices rely heavily on manual
inspection and broad- spectrum chemical spraying, which are time-consuming, labor-
intensive, and often lead to resource wastage and environmental pollution. In this context, the
integration of modern technologies such as the Internet of Things (loT), Artificial
Intelligence (Al), and Machine Learning (ML) is transforming agriculture into a data-driven,
efficient, and sustainable domain. Smart farming solutions provide real- time insights into
crop health, soil parameters, and environmental conditions, enabling farmers to make precise

and informed decisions.

Recent advancements in loT-enabled sensors, cloud computing, and Al-driven disease
detection models have paved the way for intelligent agricultural systems. Automated robots
and smart devices can now monitor soil moisture, humidity, and temperature, capture high-
resolution crop images, and analyse those using deep learning models to identify diseases
with high accuracy. Furthermore, precision spraying mechanisms ensure that fertilizers and
pesticides are applied only where necessary, reducing chemical wastage and safeguarding the
environment. Such innovations not only enhance crop productivity and quality but also offer
cost- effective and scalable solutions for small and medium-scale farmers, thereby

contributing to sustainable agricultural development.

LITERATURE SURVEY

Recent research shows rapid progress in combining loT, edge/cloud computing, and deep

learning for plant health monitoring and precision actuation. Reviews emphasize that deep

CNNs give high detection accuracy but real-world deployment needs lightweight models, edge

inference, and integrated actuation to reduce chemical use and support smallholders.

1. Al-loT based smart agriculture pivot for plant diseases detection and treatment

e Authors/ Source: A. S. Ibrahim et al. — Scientific Reports (2025).

o What they did: Proposed an Al-loT architecture integrated with a center-pivot irrigation
hardware to perform both disease detection and automated treatment (Spraying) using the
same infrastructure.

e Methods / data: Large image dataset (~25,940 images), pre-trained ResNet50 for
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classification.

o Key findings: Very high test accuracy reported (~99.8%); pivot integrates sensing —
cloud inference — actuation pipeline, enabling on-site spraying based on model
decisions.

o Gap / note for AgriRobo: Excellent for large farms with pivot systems but less suitable
for smallholder/robotic deployment scenarios.

2. Al & loT-powered edge device optimized for crop pest and disease detection (Tiny-
LiteNet)

o Authors / Source: J. P. Nyakuri et al. — Scientific Reports / PubMed entry (2025).

o What they did: Designed a low-power edge device embedding a lightweight CNN (Tiny-
LiteNet) for on-device pest/disease detection.

e Methods / data: Compact model (~1.2 MB, ~1.48M params); measured inference latency
(~80 ms) and reported strong metrics (accuracy ~98.6%, F1 ~98.4%).

o Key findings: Edge Al enables real-time detection in connectivity-limited areas and is
validated on smallholder farms.

e Gap / note for AgriRobo: Demonstrates feasibility of onboard inference — AgriRobo can
adopt a hybrid edge/cloud approach to balance latency and model complexity.

3. loT-based system of prevention & control for crop diseases and insect pests

e Authors / Source: Z. Wang et al. — Frontiers in Plant Science (2024).

o What they did: Built a prevention/control framework combining loT sensors, ozone
sterilization, light traps, and surveillance cameras for greenhouse and field use.

e Methods / data: Hardware + information management system; real-time environmental
monitoring and remote control (mobile app).

« Key findings: The integrated preventive approach reduces pesticide usage and supports
both facility and field deployments; emphasis on non-chemical control methods.

e Gap / note for AgriRobo: Good model for integrated pest management and preventative
controls — AgriRobo can combine such preventive modules with its targeted treatment
capability.

4. Machine Learning and Deep Learning for Crop Disease Diagnosis (Review)

e Authors/ Source: H. N. Ngugi et al. — Agronomy (MDPI) (2024).

e What they did: Systematic review comparing ML (SVM, RF, KNN) and DL (VGG,
ResNet, DenseNet, MobileNet) approaches for plant disease diagnosis.

o« Key findings: DL models achieve strong accuracy on curated datasets but face

generalization issues on field images; dataset imbalance and lack of diverse real-world
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data are recurring problems. The review stresses the need for lightweight models and
robust preprocessing for field deployment.

« Gap / note for AgriRobo: Reinforces design choices use of data augmentation, on-field
datasets, and a lightweight (or hybrid) model strategy.

5. Advancing real-time plant disease detection: lightweight DL model & novel dataset
(pigeon pea)

o Authors / Source: S. Bhagat et al. — Intelligent Systems with Applications / ATech
(2024).

o What they did: Released a new, real-world pigeon pea dataset and proposed lightweight
CNN variants optimized for speed and field-accuracy.

o Key findings: Lightweight models can approach the accuracy of heavier networks while
remaining deployable on constrained devices (mobile/edge), enabling practical in-field
real-time detection.

o Gap/ note for AgriRobo: Useful reference for model selection and dataset creation specific

to crop types AgriRobo targets.

Conclusion-The recent literature converges on three practical requirements for deployable
smart-farming systems: (1) robust, field-trained detection models (preferably with on- field
datasets), (2) lightweight or hybrid edge/cloud inference to operate under limited connectivity
and latency constraints, and (3) integrated actuation for precision treatment that reduces
chemical usage. Papers on pivot-based actuation, edge Tiny-LiteNet devices, preventive 10T
systems, lightweight datasets, and forecasting frameworks together map a clear design path:
AgriRobo should combine on-board sensing + lightweight edge inference, cloud analytics for
heavier models and historical learning, and precise actuation driven by Al decisions —

thereby filling gaps identified for small/medium farms.

IMPLEMENTATION

The implementation of AgriRobo integrates hardware, software, and cloud-based intelligence
into a unified framework that automates essential agricultural processes. The system is
designed with modular components, including 10T sensors for real-time environmental
monitoring, a high- resolution camera for crop imaging, Al-based disease detection models,
and actuators for irrigation, weeding, and targeted chemical spraying. Each module is
interconnected through a microcontroller and cloud platform, ensuring seamless

communication between sensing, analysis, and actuation. By combining these technologies,
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AgriRobo enables precise, data-driven decision-making, minimizing human intervention

while improving farming efficiency and sustainability.

To ensure practical usability, the system follows a step-by- step workflow that begins with
continuous data collection from sensors and image capture devices, followed by cloud- based
processing using machine learning algorithms for disease diagnosis. Based on the insights
generated, the robot autonomously carries out irrigation, weeding, or chemical spraying in the
required areas. The integration of cloud storage and a user-friendly dashboard further allows
farmers to access real-time data, receive alerts, and monitor crop health remotely. This
structured implementation not only optimizes farming practices but also provides scalability
and adaptability, making AgriRobo suitable for diverse crops and varying field conditions.

Al-Based
Analysis

7 Spraying

@ System = Farmer
Integration | Dashboard

Fig. 1. Proposed Framework Overview.

In Figure 1, This flowchart represents the end-to-end workflow of the AgriRobo system,
starting from data collection to actionable outcomes for farmers. The process begins with
image capture, where a high-resolution camera collects crop leaf and field images. These
images are then subjected to cloud upload, enabling secure storage and access for advanced
processing. In the next step, Al- based analysis is performed using deep learning models such
as CNN, ResNet, or MobileNet, which identify plant diseases and assess their severity. Based
on this analysis, the system performs decision making, determining whether chemical
intervention is necessary. If treatment is required, the chemical mixing module prepares the
correct proportion of pesticides or fertilizers, which is then applied through targeted spraying,
ensuring only affected areas are treated. Finally, all processes are managed under system
integration, with real-time updates and results displayed on a farmer dashboard, allowing

farmers to monitor crop health, resource usage, and disease management efficiently.
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SystemArchitecture

The AgriRobo system is designed with a modular architecture that integrates l0T sensors,
cloud computing, machine learning models, and robotic actuators. The hardware includes soil
moisture, temperature, and humidity sensors for continuous environmental monitoring, along
with a high-resolution camera for capturing crop images. Data collected is transmitted via
wireless communication (Wi-Fi/LoRa) to either an onboard processor (for lightweight
inference) or the cloud (for advanced Al-based disease detection). The architecture ensures a
seamless flow from sensing — processing — decision-making — actuation, thereby enabling

real-time automation in farming activities.

loTSensorIntegration

loT sensors are deployed to monitor soil and crop conditions. Soil moisture sensors trigger
irrigation only when required, preventing overwatering. Temperature and humidity sensors
track climatic variations to assess disease risk factors. The integration of these sensors with
microcontrollers (e.g., Arduino/ESP32) ensures accurate real-time data acquisition. The data
is logged in a central database, which supports both immediate decisions (e.g., irrigation

on/off) and long-term analysis for predictive farming.

Image Capture and Cloud Processing A high-resolution camera mounted on the robot
captures leaf and crop images periodically. These images are preprocessed (noise reduction,
resizing, color normalization) and uploaded to the cloud. A convolutional neural network
(CNN)-based model, trained on agricultural datasets, is used for disease detection. The model
identifies whether the crop is healthy or infected, and in case of infection, determines the
disease type and severity. This hybrid edge-cloud design ensures fast responses in the field

while leveraging the cloud for computationally heavy tasks.

Al-Based Disease Detection

For disease detection, pre-trained deep learning models such as ResNet50 or lightweight
CNNs (e.g., MobileNet, Tiny- LiteNet) are utilized. The model classifies crop images into
multiple disease categories with high accuracy. The severity of infection is also estimated to
determine whether spraying is required. By employing transfer learning, the system adapts to

multiple crops, making AgriRobo scalable and versatile for different farming environments.

Automated  Irrigation and  Weeding Based on sensor data, the irrigation system is

automatically activated to supply water in optimal amounts. This reduces wastage and ensures
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proper soil moisture levels. Similarly, an actuator-controlled mechanical weeding system
removes unwanted plants detected around crops. These automated processes reduce manual

labor and improve time efficiency in farm operations.

Smart Chemical Mixing and Targeted Spraying Upon detecting diseases, AgriRobo
activates its smart chemical mixing unit. The system calculates the precise concentration of
pesticides or fertilizers required based on disease type and severity. Robotic arms equipped
with nozzles spray chemicals only on infected areas rather than across the entire field. This
targeted spraying reduces chemical wastage, minimizes environmental pollution, and ensures
cost-effectiveness for farmers.

Cloud Storage and Data  Analytics All sensor readings and disease analysis results
are stored in the cloud. This enables farmers to access historical records via a mobile or web
dashboard. Cloud-based analytics support long-term decision-making, such as predicting
disease outbreaks using weather patterns and optimizing fertilizer schedules. Over time, the
Al models are retrained with new data to improve accuracy and adaptability.

User Interface and  Control A mobile/web application serves as the user interface
for farmers. The application displays real-time data (soil moisture, temperature, humidity,
crop health status), alerts for disease detection, and records of irrigation or spraying events.
Farmers can also override automatic decisions through manual control, ensuring flexibility

and trust in the system.

Deployment and  Testing AgriRobo is tested in controlled agricultural plots where crops
are monitored under real-world conditions. Performance metrics such as irrigation efficiency,
disease detection accuracy, pesticide reduction, and crop yield improvement are evaluated.
Field trials demonstrate how automation reduces labor requirements while maintaining or

enhancing productivity.

METHODOLOGY

The proposed system integrates modern technologies such as artificial intelligence, cloud
computing, and loT-enabled devices to optimize crop disease detection and treatment. By
automating image capture, disease analysis, decision-making, and targeted spraying, the
methodology ensures higher precision, reduces chemical wastage, and improves overall crop
yield. The farmer-friendly dashboard enhances accessibility by providing real-time reports

and controls viaa mobile application.
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A Image Capture and Cloud Upload High-resolution cameras mounted on
drones or field equipment periodically capture crop images. These images are pre-
processed (noise removal, resizing, filtering) and uploaded to a secure cloud platform for
centralized analysis.

B. Al-Based Disease Detection and Analysis Uploaded images are processed using
machine learning models such as CNN, ResNet, and MobileNet to identify crop diseases
and assess severity. This step ensures rapid detection, even at early stages of infection,
minimizing crop losses.

c. Decision-Making and Treatment Planning Based on Al analysis, the system suggests
optimal pesticide/fertilizer requirements. The microcontroller integrates this decision and
triggers alerts to the farmer through the dashboard.

D. Chemical Mixing and Targeted Spraying The controlled mixing unit prepares the
required pesticide/fertilizer solution. Targeted spraying is performed only on the infected
crop regions, reducing chemical usage, costs, and environmental impact.

E. System Integration and Farmer Dashboard All components are coordinated by a
microcontroller, which communicates with the farmer dashboard. The dashboard provides
real-time health reports, notifications, and control over drone/robotic movement and

photo uploads.

FLOWCHART

The crop monitoring system shown in the flowchart leverages 10T sensors, computer vision,
and Al models to detect plant diseases, assess severity, and carry out targeted spraying. By
combining automated data collection with intelligent analysis, the system provides
farmers with real-time decision support, reduces chemical waste, and ensures efficient disease

management.

A0
Cams ra Upluad
a?"‘g, op Sen sm C°"°°' Captures Leal oP eE" °:‘§: "ge Preprocessed
g Images 490 Devi Data to Cloud
Yos Seve rity Ge nerate
7| Assessment Treatment Plan
Al Mode! 4
> Classifies b
Disease

Microcontroller ;ap'%i'eg Dﬂshboard
Executes Action Mechanism Updalss Farmer
Continue
Monitoring Cycle

Fig. 2. Flowchart.
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In Figure 2, The process begins with continuous crop monitoring, where sensors collect
environmental and crop data, while cameras capture high-resolution leaf images. These
images undergo preprocessing on edge devices to remove noise and enhance quality before
being uploaded to the cloud for centralized analysis. An Al model then classifies whether a
disease is present in the captured images. If no disease is detected, the system updates the
farmer via the dashboard and continues the monitoring cycle, ensuring round-the-clock

surveillance.

When the Al model detects a disease, it proceeds with severity assessment to evaluate the
extent of infection. Based on this, a treatment plan is generated, which is then executed by a
microcontroller. The microcontroller activates a targeted spraying mechanism, applying
pesticides or fertilizers only to the affected areas. Throughout this process, the farmer is kept
informed via the dashboard, ensuring transparency and control. This intelligent loop of
monitoring, detection, and targeted action optimizes crop health management while reducing

manual intervention and resource wastage.

RESULTS

The developed crop monitoring system achieved strong results in terms of disease
identification and prevention. The integration of 10T sensors, edge preprocessing, and high-
resolution cameras ensured that the system continuously collected and processed high-quality
data from the field. By using advanced Al models such as CNN and ResNet, the system was
able to classify plant diseases with a high degree of accuracy. This allowed the detection of
infections at an early stage, reducing the risk of widespread damage. Farmers were able to act
in time, ensuring healthier crops and reduced losses compared to traditional manual

monitoring practices.

Farming Robot

Fig. 3. Robo Model.

In Figure 3, the severity assessment module proved highly effective in providing actionable

insights rather than just detection. By quantifying the level of infection, the system helped
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generate more precise treatment plans tailored to the needs of specific crop regions. This
avoided the conventional approach of blanket spraying, where chemicals are applied across
the entire field. Instead, the Al-driven recommendations ensured that only the required
amount of pesticide or fertilizer was prepared and used. This not only enhanced crop
productivity but also reduced input costs, making the system more economically beneficial for
farmers. The microcontroller-based execution of treatment demonstrated the efficiency of
automated field operations. Once the treatment plan was finalized, the system successfully
controlled the mixing unit and spraying mechanism, ensuring that chemicals were applied
only to infected areas. This targeted spraying significantly reduced chemical wastage,
improved soil health, and lowered the negative environmental impact of excessive pesticide
use. Additionally, the automated cycle meant that human intervention was minimized, making

the system more reliable and less labor-intensive for farmers.

=,

AgriRobot

Fig. 4. Agrirobo logo.

In Figure 4, The farmer dashboard added immense value by providing a real-time interface
for monitoring crop health, reviewing reports, and receiving alerts. Farmers could track
disease patterns, treatment history, and even control certain system functions remotely. This
real-time decision-support tool helped improve farmer confidence and ensured better crop
management strategies. Overall, the system results proved that combining Al, loT, and
automation leads to more sustainable farming practices, enabling higher yields, reduced costs,

and a more environmentally conscious approach to disease management.

CONCLUSION & FUTURE WORK

The proposed crop monitoring and disease management system successfully integrates Al,
loT, and automation to deliver a smart agricultural solution. By combining real-time image
capture, Al-based disease detection, severity assessment, and targeted spraying, the system
ensures precision in treatment while reducing chemical usage and labour dependency. The
inclusion of a farmer dashboard further enhances usability by providing timely alerts, reports,
and decision-support features. Overall, the system proves to be efficient, cost-effective, and
environmentally sustainable, offering a practical approach to modernizing crop protection
practices. Future improvements to the system can focus on expanding the dataset to include a
wider variety of crops and disease types, thereby increasing model accuracy across diverse
agricultural contexts. Integration of drone-based monitoring and autonomous navigation can
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further enhance coverage and efficiency. Additionally, incorporating weather forecasting, soil
health analysis, and predictive analytics into the dashboard would provide farmers with a
more holistic decision-making tool. The system could also benefit from enhanced scalability,
allowing smallholder farmers as well as large-scale agricultural operations to adopt the
technology seamlessly.
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