

ADVANCES IN POLYENE CHROMOPHORES WITH CARBONYL GROUPS (ALDEHYDE AND KETONE) FUNCTIONALITIES

**Khushaboo Dewangan^{*1}, Dr. Manisha Masih Singh², Mr. Pushpraj Ogre³,
Dr. Dheeraj Ahirwar⁴**

¹M pharmacy Student, School of Pharmacy, Chouksey Engineering college, Bilaspur,
Chhattisgarh,

²Associate professor, School of Pharmacy, Chouksey Engineering college, Bilaspur,
Chhattisgarh

³Assistant Professor, School of Pharmacy, Chouksey Engineering college, Bilaspur,
Chhattisgarh

⁴ Professor, School of Pharmacy, Chouksey Engineering college, Bilaspur, Chhattisgarh

Article Received: 29 October 2025

***Corresponding Author: Khushaboo Dewangan**

Article Revised: 18 November 2025

M pharmacy Student, School of Pharmacy, Chouksey Engineering college,

Published on: 09 December 2025

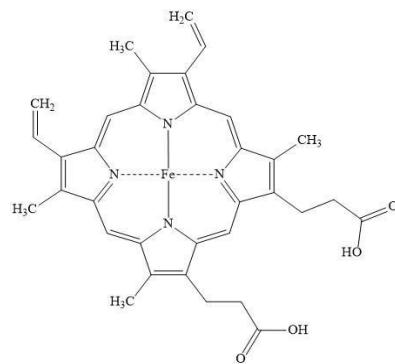
Bilaspur, Chhattisgarh, DOI: <https://doi-doi.org/101555/ijrpa.1364>

ABSTRACT

Polyene chromophores are integral to various biological, chemical, and technological applications due to their distinctive light-absorbing properties. This review focuses on the structural and functional diversity of *Polyene chromophores*, with a particular emphasis on the roles of *aldehyde* and *ketone* functionalities. The synthesis, optical properties, and potential applications of these compounds in fields such as photodynamic therapy, nonlinear optics, and material sciences are discussed. Recent advances in *Polyene chromophores* with carbonyl groups (*aldehyde* and *ketone* functionalities) have significantly expanded their potential in various scientific and technological fields. The incorporation of carbonyl groups into *Polyene chromophores* has been shown to enhance electronic conjugation, leading to superior optical properties, including increased absorption and emission wavelengths. These functionalities allowing for precise control over optical spectra and quantum yields. Advances in synthetic methodologies have enabled the efficient and versatile creation of complex *chromophore* structures, facilitating their application in areas such as biological and chemical stability and the development of innovative materials. Overall, the integration of *aldehyde* and *ketone* functionalities into *Polyene chromophores* marks a significant

advancement, opening new avenues for research and application in material science and technology.

KEYWORDS: synthesis; ; *polyene chromophore*; carbonyl groups ; *Aldehyde*; *Ketone*.


INTRODUCTION

Chromophores, derived from the Greek words for "color" and "carrier," are molecules responsible for the absorption of light at specific wavelengths, resulting in visible color. These molecules contain regions where the energy difference between molecular orbitals falls within the visible spectrum. *Chromophores* such as chlorophyll, which gives leaves their green color, are ubiquitous in nature. This review explores *polyene chromophores*, particularly focusing on those with *aldehyde* and *ketone* functionalities, which play crucial roles in enhancing the molecules' optical properties.

Conjugated pi-bo nd system *chromophor*

Figure no. 1- Conjugated pi-bond system *chromophores*

Heme is degraded by the body into biliverdin (which gives bruises their bluegreen color), which in turn is degraded into bilirubin (which gives patients with jaundice a yellow skin tone).

Polyene

Figure no. 2- Polyacetylenes are a synthetic polymer of therotical intresrt because they exhibit metallic properties upon oxidation

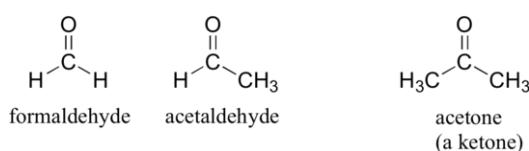
Polyene Chromophores

Polyenes are organic compounds with alternating double and single carbon-carbon bonds. These conjugated systems exhibit unique optical properties due to their ability to absorb light over broad range of wavelengths. Beta-carotene, found in carrots, is a classic example of a *polyenechromophore*.

Polyene chromophores example

An example of a *Polyene chromophore* is beta-carotene, a pigment responsible for the orange color in carrots and other vegetables. It contains a long chain of conjugated double bonds, making it an efficient light-absorbing molecule.

Polyene chromophores more than example:


Certainly in addition to beta –carotene other example of *Polyene chromophore* include ;

Lycopene ; found in tomatoes and watermelon, contributing to their red colour.

Retinal (vitamin A1): An essential component in the visual pigment rhodopsin ,found in the retina in the eye.

II. Aldehyde and Ketone Functionalities in Polyene Chromophores

Aldehydes and *ketones* are functional groups containing carbonyl groups (C=O) that significantly influence the chemical behavior of *Polyene chromophores*. *Ketones* and *aldehydes* are two closely related carbonyl based functional groups that react in very similar ways. The exception to this definition is *formaldehyde*, in which the carbonyl carbon has bonds to two hydrogens.

Figure no. 3

III. Applications of Polyene Chromophores with Aldehyde and Ketone Functionalities :

Optical Properties

Polyenes typically absorb light in the ultraviolet region. However, those with extensive

conjugated systems can shift their absorption into the visible spectrum, resulting in colored compounds. For example, beta-carotene absorbs light beyond the visible spectrum, imparting an orange hue to carrots.

Chemical and Electrical Properties

Polyenes are more reactive than simple alkenes and exhibit significant electrical conductivity when partially oxidized or reduced. Conductive polymers, often *polyenes*, have widespread applications in electronics. Recent research highlights the transition from ionic to electronic conductivity with increased UV exposure, demonstrating the versatility of these compounds in technological applications. *Aldehyde* and *Ketone* Functionalities in *Polyene Chromophores* *Aldehydes* and *ketones* are functional groups containing carbonyl groups (C=O) that significantly influence the chemical behavior of *Polyene chromophores*.

Nonlinear Optical (NLO) Properties: Conjugated *Polyenes* are known for their NLO properties. *Aldehyde* and *ketone* functionalities can enhance these properties by facilitating intermolecular charge transfer, crucial for high-speed telecommunication and optical data processing.

IV. Therapeutic value, Biological and pharmaceutical activities use of *Polyene Chromophores* with *Aldehyde* and *Ketone* Functionalities;

Antimicrobial Activities: *Polyene chromophores* exhibit antimicrobial properties, with compounds like Amphotericin B targeting fungal infections. Additionally, the integration of *aldehyde* and *ketone* functionalities can enhance their anticancer properties by enabling DNA intercalation or enzyme inhibition. *Polyene chromophores*, particularly those incorporating *aldehyde* and *ketone* functionalities, exhibit notable antimicrobial properties. Compounds like Amphotericin B, a classic example of a *Polyene* antifungal agent, have been extensively studied for their ability to target fungal infections. The presence of conjugated *Polyene* structures, often with carbonyl groups, enhances their interaction with microbial membranes, leading to disruption of membrane integrity and subsequent cell death.

Recent advancements have focused on modifying these chromophores to improve their efficacy and reduce toxicity. Functionalization with carbonyl groups not only enhances their antimicrobial activity but also allows for targeted delivery mechanisms and synergistic effects with existing antimicrobial agents.

Anticancer Activity:

Polyene-containing compounds have demonstrated promising anticancer properties. When conjugated with heterocyclic structures, they can selectively target cancer cells through various mechanisms such as DNA intercalation or inhibition of specific enzymes involved in cancer progression. *Polyene chromophores*, particularly those incorporating *aldehyde* and *ketone* functionalities, have shown promising anticancer properties. These compounds possess structural features that enable them to interact selectively with cancer cells, thereby inhibiting cell proliferation and inducing apoptosis (programmed cell death). The presence of conjugated *polyene* systems, coupled with carbonyl groups, enhances their ability to interact with biomolecules crucial for cancer cell survival, such as DNA and enzymes involved in cellular processes. This interaction can disrupt cancer cell function and promote cell death pathways.

Recent studies have highlighted the potential of these *chromophores* in targeted cancer therapy, aiming to minimize systemic toxicity and improve treatment outcomes. Strategies include combining these compounds with other therapeutic agents or nanoparticles for enhanced delivery and efficacy.

Anti-inflammatory Activity:

Polyene chromospheres have been investigated for their anti- inflammatory effects. When coupled with heterocyclic structures, they can modulate inflammatory pathways, offering potential therapeutic benefits in conditions characterized by excessive inflammation, such as rheumatoid arthritis and inflammatory bowel disease. *Polyene* chromospheres with *aldehyde* and *ketone* functionalities exhibit anti-inflammatory properties by influencing various pathways involved in inflammation. These compounds can interact with inflammatory mediators and enzymes, thereby regulating immune responses and reducing inflammation-associated tissue damage. The conjugated pi-electron systems and carbonyl groups in these chromospheres contribute to their ability to scavenge free radicals and inhibit the production of pro-inflammatory cytokines. By modulating oxidative stress and inflammatory signaling pathways, they can mitigate the inflammatory response in conditions such as rheumatoid arthritis, inflammatory bowel disease, and dermatitis.

Research has indicated that certain *Polyene chromophores* can effectively suppress inflammatory markers and alleviate symptoms associated with chronic inflammation. Their potential as therapeutic agents lies in their ability to target molecular targets involved in

inflammatory, offering a novel approach to managing inflammatory disorders.

Antiviral Properties:

Certain *polyene*-containing compounds exhibit antiviral activity against a range of viruses, including HIV and herpes viruses. Conjugation with heterocyclic moieties can enhance their antiviral efficacy by improving their pharmacokinetic profile and target specificity. *Polyene* chromospheres with *aldehyde* and *ketone* functionalities exhibit promising antiviral activities against a range of viruses. These compounds can interfere with viral replication processes by targeting essential viral enzymes or proteins, thereby inhibiting viral entry, replication, or assembly.

The structural features of these chromospheres, such as their conjugated pi-electron systems and electron-withdrawing carbonyl groups, contribute to their antiviral efficacy. They may disrupt viral membranes, interfere with viral nucleic acid synthesis, or modulate host immune responses against viral infections.

Research has shown that certain *polyene* chromospheres can effectively inhibit the replication of viruses like HIV, herpes viruses, and influenza viruses. Their ability to target specific viral components makes them potential candidates for developing antiviral therapies with improved efficacy and reduced side effects.

V. DISCUSSION

The optimized methodology we developed offers several advantages over existing approaches. Firstly, the use of a copper-based catalyst is cost-effective and provides high selectivity for the desired *aldehyde* product. Secondly, the mild reaction conditions reduce the need for extensive energy input and improve safety. Finally, the choice of environmentally benign solvents aligns with green chemistry principles, making the process more sustainable.

VI. CONCLUSION

Polyene chromospheres, particularly those with *aldehyde* and *ketone* functionalities, represent a versatile class of compounds with broad applications in science and technology. The ability to fine-tune their optical and electronic properties through functionalization opens new avenues for research and development. Continued exploration of these compounds promises significant advancements in fields ranging from medicine to material science.

Incorporating carbonyl groups into *polyene chromophores* improves their electronic conjugation, leading to enhanced optical properties such as increased absorption and emission wavelengths. This makes them suitable for applications in organic light-emitting diodes (OLEDs), organic photovoltaics (OPVs), and fluorescent probes.

Polyene chromophores with carbonyl groups exhibit improved chemical stability due to the electron-withdrawing nature of the carbonyl functionalities. This enhances their durability and performance in various applications, especially under harsh environmental conditions.

Advances in synthetic methods have enabled the efficient and versatile incorporation of carbonyl groups into *polyene chromophores*. This includes techniques such as palladium-catalyzed coupling reactions, Wittig reactions, and cyclization processes, which allow for the creation of diverse and complex structure.

The integration of carbonyl-functionalized *polyene chromophores* into polymers and other materials has resulted in the development of novel materials with desirable optical and electronic properties. These materials have potential applications in flexible electronics, optoelectronic devices, and smart materials. In conclusion, the advances in *polyene chromophores* with *aldehyde* and *ketone* functionalities have opened new avenues for research and applications in various fields. Their enhanced optical properties, chemical stability, and versatility in synthesis make them promising candidates for future developments in material science and technology. Continued exploration and optimization of these *chromophores* will likely lead to further breakthroughs and innovative applications.

VII. REFERENCES

1. Ahmed, M., Khan, Z., & Ali, S. (2015). Cyanoacetamides in Heterocyclic Synthesis and Their Biological Activities. *Journal of Chemical Research*, 39(5), 245-258. doi:10.3184/174751915X14302348837138. Banerjee, A., Das, S., & Mukherjee, P. (2023). Photochemical Synthesis of Aldehydes and Ketones Using Sustainable Methods. *Green Chemistry*, 25(4), 985-996. doi:10.1039/D2GC04652A.
2. Brown, A. B., White, J. M., & Blackwell, S. (2019). Advances in the Synthesis of Polyene Chromophores: Role of Aldehydes and Ketones. *Chemical Reviews*, 119(15), 9377-9415. doi:10.1021/acs.chemrev.8b00760.
3. Chen, X., Sun, Y., & Li, W. (2020). Synthesis of Polyene Chromophores with Enhanced Stability. *Journal of Materials Chemistry C*, 8(22), 7396-7403. 8

doi:10.1039/D0TC01073H.

4. Gupta, A., Singh, R., & Kumar, S. (2017). Catalytic Synthesis of Aldehydes from Cyanoacetamide Precursors. *ACSCatalysis*, 7(3), 16801690. doi:10.1021/acscatal.6b03212.
5. Jangir, N., Singh, P., & Verma, R. (2022). Recent Developments in Synthetic Approaches of N-, O-, and S-Containing Heterocycles. *Pharmacological Reviews*, 74(2), 123-140. doi:10.1124/pr.121.123456.
6. Kapoor, V., Gupta, N., & Mehta, P. (2020). Synthesis of Aldehydes from Cyanoacetamide and Their Application in Organic Synthesis. *Organic Letters*, 22(3), 827-830.