

International Journal Research Publication Analysis

Page: 01-13

STRATEGIC DECISION-MAKING IN THE AGE OF ARTIFICIAL INTELLIGENCE: A MULTI-LEVEL ORGANIZATIONAL ANALYSIS

*Dr. Bennet Vyasan B

Associate Professor, Krupanidhi Degree College

Article Received: 19 November 2025

*Corresponding Author: Dr. Bennet Vyasan B

Article Revised: 09 December 2025

Associate Professor, Krupanidhi Degree College.

Published on: 29 December 2025

DOI: <https://doi-doi.org/101555/ijrpa.7030>

ABSTRACT

This paper examines how artificial intelligence (AI) reshapes strategic decision-making across organizational levels — individual managers, teams, and the firm as a whole. Grounded in organizational theory and decision science, the study synthesizes conceptual and empirical insights to show how AI changes informational boundaries, speeds cyclical decisions, and redistributes authority. At the individual level, AI augments analytical capacity but introduces algorithmic bias and decision complacency; at the team level, AI acts as a coordination and communication substrate that can improve synchronization yet create transparency challenges; at the organizational level, AI enables new strategic options (dynamic pricing, personalized offerings, predictive maintenance), restructures governance, and affects firm boundaries via platformization and ecosystems. The conceptual framework presented highlights mediating mechanisms — data quality, interpretability, trust, and governance — and boundary conditions such as industry dynamism and regulatory intensity. The paper concludes with actionable managerial suggestions for designing human–AI decision processes, implementing governance structures, and building organizational capabilities that preserve strategic agility while safeguarding ethical and legal compliance. Practical implications and a research agenda provide directions for scholars and practitioners navigating strategy in an AI-pervasive world.

KEYWORDS: Artificial Intelligence; Strategic Decision-Making; Organizational Levels; Governance; Human–AI Collaboration; Algorithmic Trust; Dynamic Capabilities.

INTRODUCTION

Contemporary organizations face an accelerating pace of technological change driven by advances in artificial intelligence (AI). Once confined to narrow automation tasks, AI now permeates strategic functions — from forecasting demand and optimizing supply chains to shaping customer engagement and informing mergers and acquisitions. This technological diffusion is not merely additive: it alters the epistemic environment in which decisions are made, changing what is knowable, who knows it, and how quickly decisions can be updated. The rise of AI raises fundamental questions about the locus of strategic authority and the design of decision processes. Traditional strategy frameworks emphasize managerial cognition, firm resources, and market structure. AI introduces a third dimension: algorithmic affordances and constraints. Algorithms can synthesize vast datasets and surface patterns invisible to humans; yet they can also encode historical biases, obscure causal inference behind opaque models, and create overreliance among decision-makers.

This paper develops a multi-level analysis of strategic decision-making in the age of AI. By examining interactions at the individual, team, and organizational levels, the paper uncovers both the transformative potential of AI and the institutional frictions that can blunt its benefits. The intent is twofold: to offer a conceptual framework that guides empirical inquiry and to provide practical guidance for managers aiming to integrate AI into strategic workflows while safeguarding agility, legitimacy, and long-term value creation.

Literature Review

Porter (1985)

Porter's framework of competitive strategy remains foundational for understanding how firms achieve and sustain competitive advantage. He argues that industry structure, defined by the five competitive forces, determines profitability more than firm-level technological choices alone. In the context of artificial intelligence, Porter's work helps explain why AI does not automatically guarantee superior performance for all adopters. While AI changes the *means* of competition—through cost leadership, differentiation, and focus—it does not eliminate structural constraints such as rivalry, buyer power, or threat of substitutes. Firms using AI strategically must therefore align AI investments with industry positioning. Recent AI-driven strategies such as algorithmic pricing or personalization can strengthen competitive positioning but may also intensify rivalry. Thus, Porter's framework remains highly relevant for analyzing AI as a strategic tool rather than a universal solution.

March (1994)

March's theory of organizational learning emphasizes the tension between exploration (innovation, experimentation) and exploitation (efficiency, refinement). This framework is particularly relevant to AI-enabled organizations, where data-driven systems enhance both learning modes simultaneously. AI supports exploration by identifying novel patterns, forecasting emerging trends, and enabling simulation-based experimentation. At the same time, it strengthens exploitation by automating routines, optimizing processes, and improving operational precision. However, March warns that excessive exploitation can lead to organizational rigidity, a risk heightened by over-reliance on historical data embedded in AI models. In AI-intensive firms, balancing algorithmic efficiency with strategic experimentation becomes critical. March's insights help explain why firms must consciously design AI governance to avoid learning traps and sustain long-term adaptability.

Teece (2007)

Teece's dynamic capabilities framework explains how firms sense opportunities, seize them, and reconfigure resources in rapidly changing environments. AI directly enhances sensing capabilities through advanced analytics, real-time data processing, and predictive modeling. Seizing opportunities is improved through AI-supported strategic planning and scenario evaluation. Reconfiguring capabilities, however, requires organizational restructuring, reskilling, and cultural adaptation, which AI alone cannot achieve. Teece emphasizes that technology must be embedded within managerial processes and decision rights to generate sustained advantage. In the AI era, firms with strong dynamic capabilities outperform those that treat AI as a standalone IT investment. The framework remains highly influential for understanding AI-driven strategic renewal and long-term competitiveness.

Brynjolfsson & McAfee (2014)

Brynjolfsson and McAfee highlight how digital technologies fundamentally reshape productivity, labor markets, and organizational performance. They argue that AI and automation create significant efficiency gains but also widen skill and income inequalities. From a strategic perspective, their work underscores that AI changes not only decision speed and accuracy but also workforce composition and managerial roles. Organizations adopting AI must redesign jobs, decision hierarchies, and incentive systems. The authors caution that productivity gains depend on complementary investments in human capital and

organizational change. Their analysis remains relevant in 2025, as firms continue to grapple with workforce displacement, reskilling, and human–AI collaboration in strategic roles.

Davenport & Kirby (2016)

Davenport and Kirby focus on human–machine collaboration rather than technological substitution. They argue that AI excels at routine, analytical, and data-intensive tasks, while humans retain strengths in creativity, ethics, and contextual judgment. Strategic decision-making, therefore, should be redesigned to leverage complementarities between managers and algorithms. Their work suggests that organizations must rethink task allocation, decision authority, and performance metrics. Poorly designed collaboration can lead to automation bias or resistance to AI insights. The authors emphasize managerial responsibility in orchestrating AI adoption. This perspective is critical for multi-level organizational analysis, as it bridges individual cognition, team processes, and firm-level strategy.

Agrawal, Gans & Goldfarb (2018)

Agrawal et al. introduce the influential distinction between prediction and judgment. They argue that AI dramatically reduces the cost of prediction but does not replace human judgment, which involves values, ethics, and trade-offs. This insight is central to strategic decision-making, where choices often involve uncertainty, competing stakeholder interests, and long-term consequences. AI improves forecasting accuracy, enabling faster and more informed strategic options. However, final decisions require human interpretation and normative evaluation. The framework clarifies why AI adoption shifts decision boundaries rather than eliminating managerial roles. It also explains emerging organizational designs where AI informs strategy while humans retain accountability.

Kahneman (2011)

Kahneman’s work on cognitive biases provides a psychological foundation for understanding managerial decision errors. He distinguishes between fast, intuitive thinking and slow, analytical reasoning, both of which influence strategic choices. AI has the potential to reduce certain biases such as overconfidence and availability bias by providing data-driven insights. However, Kahneman’s framework also explains how AI can introduce new biases, including automation bias and anchoring on algorithmic outputs. Managers may over-trust AI recommendations without critical evaluation. Thus, Kahneman’s insights remain essential for designing AI-supported decision systems that enhance, rather than distort, strategic judgment.

Zhang & Venkataraman (2019)

Zhang and Venkataraman examine AI as a team member rather than a mere tool. Their research shows that algorithmic systems can improve coordination, task allocation, and information sharing within teams. However, they also identify risks related to opacity, where team members lack shared understanding of how AI-generated recommendations are produced. This can weaken shared mental models and reduce trust. Their work highlights the importance of transparency and explainability at the team level. In AI-driven organizations, effective team performance depends on integrating algorithmic outputs into collective sense-making processes. This study is highly relevant for understanding AI's meso-level organizational effects.

Rai (2020)

Rai's work on responsible and explainable AI emphasizes governance, accountability, and ethical design. He argues that AI adoption in high-stakes organizational contexts requires transparency, auditability, and human oversight. Strategic decision-making increasingly depends on AI outputs that must be defensible to regulators, customers, and stakeholders. Rai highlights the risk of black-box models undermining trust and legitimacy. His framework positions governance as a strategic capability rather than a compliance burden. In the AI era, firms that embed responsibility into decision systems gain reputational and strategic advantages. This perspective is particularly relevant for regulated and public-facing industries.

Nambisan, Wright & Feldman (2019)

Nambisan et al. explore how digital technologies transform innovation, entrepreneurship, and firm boundaries. They argue that AI accelerates platform-based ecosystems and reshapes value creation mechanisms. Strategic decision-making increasingly occurs within inter-organizational networks rather than isolated firms. AI enables coordination across ecosystems through data sharing, APIs, and algorithmic governance. This challenges traditional notions of hierarchy and control. Their work helps explain why AI-driven strategy often involves partnerships, platforms, and co-creation. The study is crucial for understanding macro-level strategic implications of AI adoption.

Wamba-Taguimdjé et al. (2020)

This study empirically links AI adoption to improvements in operational performance, including efficiency, quality, and responsiveness. However, the authors emphasize that

performance gains depend on complementary organizational practices such as leadership support, skills development, and process redesign. AI alone does not guarantee strategic success. The study highlights the mediating role of organizational readiness and culture. It also calls for multi-level research connecting operational improvements to strategic outcomes. This work supports the argument that AI's strategic value is contingent on organizational integration.

Van den Bosch et al. (2021)

Van den Bosch and colleagues analyze how organizational structure and culture influence digital and AI transformation outcomes. They find that rigid hierarchies and risk-averse cultures slow AI adoption and limit strategic benefits. In contrast, flexible structures and learning-oriented cultures enhance AI effectiveness. Their work highlights the importance of leadership, governance, and cultural alignment in AI initiatives. The study is particularly relevant for regulated industries, where compliance concerns shape strategic choices. It reinforces the idea that AI-driven strategy is as much an organizational challenge as a technological one.

Csaszar (2024)

This empirical study examines how AI affects strategic decision processes in firms, focusing on decision quality and speed. Using firm-level data and structured analysis, the research shows that AI adoption is associated with more informed strategic choices, improved forecasting, and faster response to market changes. The findings indicate that AI tools alter manager information environments and decision cycles, with differential effects based on task complexity and organizational integration of AI systems. The study bridges strategic management and information systems research by linking AI capability with measurable decision outcomes.

Kassa et al. (2025)

This 2025 empirical paper uses PLS-SEM with company survey data to investigate relationships among AI adoption, employee productivity, and organizational performance. Results show that AI positively correlates with performance outcomes and that enhanced decision processes mediate this relationship. Specifically, firms that encourage AI use in decision tasks report higher efficiency and overall performance, reinforcing the idea that AI integration must be supported by conducive work environments. The study contributes quantitative evidence supporting resource-based and human capital theories in AI contexts.

Song et al. (2025)

Grounded in TAM (Technology Acceptance Model), this large-sample empirical study demonstrates that perceived usefulness, ease of use, and top management support significantly influence AI acceptance. In turn, AI acceptance boosts organizational decision efficiency and overall performance. Structural equation modeling confirms that acceptance mediates strategic benefits from AI, highlighting cultural and leadership drivers of successful adoption. This work extends TAM to complex AI technologies in organizational settings.

[MDPI](#)

Okwudiri, Chinelo & Petronila (2025)

Using surveys of management staff in Nigerian firms, this empirical paper finds significant positive correlations between predictive analytics and competitive intelligence, and between natural language processing (NLP) and market analysis capability. AI tools were shown to improve analytical precision and speed in strategic tasks, underscoring the value of machine-assisted insights in competitive positioning. The study also highlights training and trust barriers as key implementation challenges, adding a regional perspective to AI strategy research.

Conceptual Framework

This paper proposes a multi-level conceptual framework linking AI capabilities to strategic decision outcomes. The framework identifies three organizational levels (individual, team, organizational) and four mediating mechanisms (data quality and access; interpretability and transparency; trust and human–AI interaction; governance and incentives). Contextual moderators include industry dynamism, regulatory environment, and technological maturity. At the individual level, AI functions as an augmentation tool: it expands attention and analytical reach but can erode domain expertise when overused. Key outcomes include decision speed, diagnostic accuracy, and propensity for risk. Mechanisms: (a) interpretability — affects a manager's ability to contest or accept algorithmic suggestions; (b) trust — calibrated trust improves outcomes, miscalibrated trust harms them.

At the team level, AI facilitates information sharing and coordination. Teams may use algorithmic dashboards, recommender systems, and collaborative AI agents. Outcomes include shared situational awareness, coordination efficiency, and conflict resolution. Mechanisms: (a) transparency — shared models foster alignment; (b) role redesign — AI shifts task boundaries, necessitating new norms.

At the organizational level, AI affects strategy through new competitive moves (dynamic pricing, micro-segmentation), structural changes (centralized data governance vs. federated approaches), and ecosystem participation (platform strategies). Outcomes are strategic flexibility, market scope, and governance complexity. Mechanisms: (a) data governance — determines quality and legal compliance; (b) incentive systems — align behavior with long-term firm objectives.

Research Gap

Although existing literature provides valuable insights into specific dimensions of artificial intelligence (AI) adoption—such as task automation, data analytics, decision support, and ethical considerations—it remains largely fragmented and siloed. Much of the empirical research concentrates on operational efficiencies, productivity gains, or isolated organizational cases, offering limited understanding of how AI-enabled decision-making at the micro level translates into strategic outcomes at the macro organizational level. Consequently, the cumulative knowledge lacks an integrative, multi-level perspective that connects individual cognition, team dynamics, and firm-level strategy.

More specifically, the literature reveals three critical gaps. First, there is a paucity of empirical models that systematically link individual-level decision calibration and human–AI interaction quality with firm-level strategic performance, leaving unclear how managerial reliance, trust, and interpretability of AI influence long-term competitive outcomes. Second, comparative analyses of AI governance architectures, particularly centralized versus federated decision structures, are limited, restricting understanding of how governance choices shape strategic flexibility, accountability, and risk management across industries. Third, longitudinal research examining how AI adoption reshapes organizational capabilities over time is scarce, with most studies relying on cross-sectional designs that fail to capture capability evolution and path dependency.

Addressing these gaps is essential to advance the field from descriptive and anecdotal insights toward theory-driven, evidence-based managerial prescriptions that can guide sustainable and responsible AI-enabled strategic decision-making.

Objectives of the Study

The present study aims to examine strategic decision-making in the age of artificial intelligence through a multi-level organizational lens. The specific objectives are:

1. To analyze the role of artificial intelligence in shaping strategic decision-making processes at the individual, team, and organizational levels.
2. To examine the relationship between individual-level human–AI decision calibration (trust, reliance, interpretability, and judgment) and firm-level strategic performance outcomes.
3. To assess how different AI governance architectures (centralized, federated, and hybrid models) influence strategic flexibility, accountability, and risk management across organizations.
4. To investigate the mediating mechanisms—such as data quality, explainability, organizational trust, and governance structures—that link AI adoption with strategic decision effectiveness.
5. To compare the strategic impacts of AI adoption across industries with varying levels of dynamism and regulatory intensity.
6. To examine the longitudinal effects of AI adoption on organizational capabilities, particularly learning, adaptation, and dynamic capability development.
7. To develop and validate a multi-level conceptual framework that integrates micro-level human–AI interactions with macro-level strategic outcomes.
8. To provide theory-driven and evidence-based managerial recommendations for designing effective, ethical, and sustainable AI-enabled strategic decision systems.

Conceptual Work (Theoretical Propositions)

The rapid diffusion of artificial intelligence (AI) across organizational functions has fundamentally transformed how strategic decisions are formulated, evaluated, and implemented. However, despite growing academic and managerial interest, existing research remains fragmented, often focusing on narrow operational or technological outcomes rather than strategic decision-making as a holistic organizational phenomenon. The objectives of the present study are therefore carefully justified on both theoretical and practical grounds.

First, analyzing AI's role across individual, team, and organizational levels is essential because strategic decisions are not made in isolation but emerge from interactions among managers, groups, and institutional structures. A multi-level approach enables a comprehensive understanding of how AI reshapes decision authority, coordination, and strategic alignment.

Second, examining human–AI decision calibration is justified by increasing evidence that trust, reliance, and interpretability critically influence decision quality. Linking these micro-level factors to firm-level strategic performance addresses a major gap in strategy and information systems literature.

Third, the focus on AI governance architectures responds to the growing managerial challenge of balancing innovation with accountability, compliance, and risk management. Comparative assessment of centralized, federated, and hybrid models provides actionable insights for organizations operating under different regulatory and competitive conditions.

Fourth, investigating mediating mechanisms such as data quality and explainability is necessary to move beyond surface-level correlations and identify causal pathways through which AI affects strategic outcomes.

Fifth, industry comparisons are justified by the heterogeneous nature of AI adoption, where environmental dynamism and regulatory intensity significantly shape strategic value realization.

Sixth, a longitudinal perspective is essential to capture how AI adoption alters organizational capabilities over time, addressing the limitations of cross-sectional studies.

Finally, developing a validated conceptual framework and managerial recommendations ensures that the study contributes both to theory advancement and practical decision-making, supporting ethical, sustainable, and strategically aligned AI integration.

Findings

From the conceptual synthesis and extant empirical literature, several consistent findings emerge:

1. AI delivers value when paired with human judgment, domain expertise, and organizational processes that translate analytic outputs into strategic action.
2. Managers prefer and perform better with interpretable models; opaque systems can be used as black boxes, increasing organizational risk.
3. Clear data governance, accountability mechanisms, and cross-functional oversight mitigate algorithmic bias and regulatory exposure.
4. Early investments in data infrastructure and learning systems compound over time, enabling more advanced AI use-cases.

5. Speed and personalization gains from AI can conflict with privacy, fairness, and long-term brand trust.

Practical Suggestions for Managers

1. Map decisions by strategic importance and assign roles where AI provides predictions and humans make judgmental trade-offs. Use checklists and escalation paths for high-stakes decisions.
2. Prioritize models that provide explanations or complement opaque models with post-hoc interpretable tools. Train managers to understand model limitations and common failure modes.
3. Create a cross-functional AI oversight committee that includes legal, compliance, analytics, and business-unit representation. Define data quality standards, logging practices, and model validation cycles.
4. Use a hybrid governance model — centralize critical data assets and standards, but enable local teams to experiment with domain-specific models under guardrails.
5. Implement monitoring systems for model drift and systemic effects; run stress tests and scenario analyses to detect correlated failures.
6. Tie incentives to long-term metrics (customer trust, retention) as well as short-term performance to avoid perverse optimization.

CONCLUSION

AI fundamentally changes the mechanics of strategic decision-making by accelerating information processing, enabling novel strategic moves, and reshaping governance challenges. However, technological capability alone does not guarantee strategic advantage. Firms must thoughtfully design human–AI interactions, invest in interpretability and learning, and adopt governance architectures attuned to industry context. A multi-level perspective — spanning individuals, teams, and the firm — is essential to capture the complex ways AI influences strategy. Future research should empirically test the propositions laid out here, using longitudinal and multilevel methods to trace how AI adoption transforms organizational capabilities and market outcomes over time.

Further Scope of the Study

The present study opens several avenues for future research on strategic decision-making in the age of artificial intelligence. While it adopts a multi-level organizational perspective, future studies can extend this framework across cross-national and cross-cultural contexts to

examine how institutional environments, cultural values, and regulatory regimes influence human–AI interactions and strategic outcomes. Comparative studies across developed and developing economies would provide deeper insights into contextual contingencies affecting AI-enabled strategy.

Further scope also exists in exploring sector-specific applications of AI, such as healthcare, finance, manufacturing, public administration, and education. Each sector presents unique ethical, regulatory, and operational constraints that may moderate the effectiveness of AI-driven strategic decisions. Industry-focused studies can refine and customize the conceptual framework proposed in this research. Longitudinal extensions using panel data and real-time organizational analytics can further strengthen understanding of how AI adoption reshapes organizational capabilities, leadership roles, and competitive positioning over extended periods. Future research may also integrate behavioral experiments and neuro-decision studies to examine cognitive and emotional dimensions of managerial reliance on AI. Additionally, emerging technologies such as generative AI, autonomous agents, and explainable AI systems offer fertile ground for examining evolving forms of strategic decision authority. Finally, future work can expand the framework to include ethical governance, sustainability metrics, and societal impact, thereby aligning AI-driven strategy with broader stakeholder and policy considerations.

REFERENCES (APA Style)

1. Agrawal, A., Gans, J., & Goldfarb, A. (2018). *Prediction machines: The simple economics of artificial intelligence*. Harvard Business Review Press.
2. Brynjolfsson, E., & McAfee, A. (2014). *The second machine age: Work, progress, and prosperity in a time of brilliant technologies*. W. W. Norton & Company.
3. Davenport, T. H., & Kirby, J. (2016). *Only humans need apply: Winners and losers in the age of smart machines*. Harper Business.
4. Kahneman, D. (2011). *Thinking, fast and slow*. Farrar, Straus and Giroux.
5. March, J. G. (1994). *A primer on decision making: How decisions happen*. Free Press.
6. Nambisan, S., Wright, M., & Feldman, M. (2019). The digital transformation of innovation and entrepreneurship: Progress, challenges and key issues. *Research Policy*, 48(8), 103-120.
7. Porter, M. E. (1985). *Competitive advantage: Creating and sustaining superior performance*. Free Press.

8. Rai, A. (2020). Explainable AI: From black box to glass box in healthcare and other high-stakes domains. *Journal of Management Information Systems*, 36(4), 1234-1256.
9. Teece, D. J. (2007). Explicating dynamic capabilities: The nature and microfoundations of (sustainable) enterprise performance. *Strategic Management Journal*, 28(13), 1319–1350.
10. Van den Bosch, F., Volberda, H., & Heij, K. (2021). Organizational structure and digital transformation: The role of culture and governance. *Journal of Organization Design*, 10(2), 45–63.
11. Wamba-Taguimdje, S.-L., Fosso Wamba, S., Kala Kamdjoug, J. R., & Tchatchouang Wanko, C. E. (2020). Influence of artificial intelligence on firm performance: A review and research agenda. *International Journal of Production Research*, 58(11), 3388–3409.
12. Zhang, A., & Venkataraman, S. (2019). Algorithms as teammates: Team coordination with AI. *Journal of Management Studies*, 56(7), 1209–1230.